



### Möbius transformations



Kung Mik Kei 1155108503 Wong Wai Ching 1155108896 MATH4900E Group 3

# Outline

- 1. Introduction
- 2. Transitivity
- 3. Transfomration
- 4. Relfection
- 5. Conformality of elements
- 6. Preserving H and transitivity properties
- 7. Conlusion
- 8. Reference

# 1. Introduction

# Definition

A function  $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$  is a homeomorphism if f is a bijection and if both f and  $f^{-1}$  are continuous.

Note that,

$$Homeo(\overline{\mathbb{C}}) = \{f : \overline{\mathbb{C}} \to \overline{\mathbb{C}} : f \text{ is homeomorphisms } \}$$

Let  $Homeo^{\mathbb{C}}(\overline{\mathbb{C}})$  be a subset of the group  $Homeo(\overline{\mathbb{C}})$  that contains all those homeomorphisms of  $\overline{\mathbb{C}}$  taking the circle in  $\overline{\mathbb{C}}$  to circle in  $\overline{\mathbb{C}}$ 

# Recall Circle in Riemann Sphere







Circle in Riemann sphere

# Example

1. There are some elements that in  $Homeo(\overline{\mathbb{C}})$  but not in  $Homeo^{C}(\overline{\mathbb{C}})$ 

Let  $f:\overline{\mathbb{C}}\to\overline{\mathbb{C}}$ 

$$f(z) = \begin{cases} z & Re(z) < 0\\ z + iRe(z) & Re(z) \ge 0\\ \infty & z = \infty \end{cases}$$
$$f^{-1}(z) = \begin{cases} z & Re(z) < 0\\ z - iRe(z) & Re(z) \ge 0\\ \infty & z = \infty \end{cases}$$

Note that, f is bijective and both f and  $f^{-1}$  are continuous. Therefore,  $f \in Homeo(\overline{\mathbb{C}})$  . However, since the image of  $\overline{\mathbb{R}}$  under f is not a circle in  $\overline{\mathbb{C}}$ . Therefore, it is not in  $Homeo^{\mathbb{C}}(\overline{\mathbb{C}})$ 

# Example

2. The element f of  $Homeo(\overline{\mathbb{C}})$  is defined by

 $f(z)=az+b \quad \text{for} \ z\in \mathbb{C} \text{ and } f(\infty)=\infty$ 

where  $a, b \in \mathbb{C}$  and  $a \neq 0$ , and it is an element in  $Homeo^{\mathbb{C}}(\overline{\mathbb{C}})$ Proof

Recall that the equation of the circle in  $\ensuremath{\mathbb{C}}$  is in the form,

$$\alpha z\overline{z} + \beta z + \overline{\beta}\overline{z} + \gamma = 0$$
  
where  $\alpha, \gamma \in \mathbb{R}$  and  $\beta \in \mathbb{C}$  and where  $\alpha \neq 0$  ....(1)

Then every Euclidean line in  $\mathbb{C}$  can be explained in the form,

$$\beta z + \overline{\beta} \overline{z} + \gamma = 0 \qquad \dots (2)$$
  
where  $\beta \in \mathbb{C}$  and  $\gamma \in \mathbb{R}$ 

Now, we need to show f satisfies these equations

# Proof

Let 
$$w = az + b$$
, then  $z = \frac{w - b}{a}$   
Put  $z = \frac{w - b}{a}$  into the equation (2)

We have,

$$\beta z + \overline{\beta}\overline{z} + \gamma = \frac{\beta(w-b)}{a} + \frac{\overline{\beta}(w-b)}{a} + \gamma$$
$$= \frac{\beta}{a}w + \frac{\overline{\beta}}{a}\overline{w} - \frac{\beta}{a}b - \frac{\overline{\beta}}{a}\overline{b} + \gamma$$
$$= 0$$

This shows that w also satisfies the equation of a Euclidean line in  $\mathbb C$ 

### Continue

Let 
$$w = az + b$$
, then  $z = \frac{w - b}{a}$   
Put  $z = \frac{w - b}{a}$  into the equation (1)  
 $\alpha z\overline{z} + \beta z + \overline{\beta}\overline{z} + \gamma = \alpha \frac{1}{a}(w - b)\overline{\frac{1}{a}(w - b)} + \beta \frac{1}{a}(w - b) + \overline{\beta}\overline{\frac{1}{a}(w - b)} + \gamma$   
 $= \frac{\alpha}{|a|^2}(w - b)\overline{w - b} + \frac{\alpha}{a}\beta\alpha(w - b) + \frac{\overline{\alpha}}{\overline{a}}\overline{\beta}\overline{\alpha}(\overline{w - b}) + \frac{\alpha}{|a|^2}\frac{|\beta|^2 a}{\alpha} - \frac{\alpha}{|a|^2}\frac{|\beta|^2 a}{\alpha} + \gamma$   
 $= \frac{\alpha}{|a|^2}((w - b + \frac{\overline{\beta}a}{\alpha})(\overline{w - b} + \frac{\beta\overline{a}}{\overline{\alpha}}) - \frac{|b|^2}{\overline{a}} + \gamma$   
 $= \frac{\alpha}{|a|^2}\left|w - b + \frac{\overline{\beta}a}{\alpha}\right|^2 - \frac{|b|^2}{\overline{a}} + \gamma = 0$ 

Then it satisfy the equation of the circle in  $\ensuremath{\mathbb{C}}$  .

# Example

3. The element J of  $Homeo(\overline{\mathbb{C}})$  defined by  $J(z) = \frac{1}{z}$  for  $z \in \mathbb{C} - \{0\}, J(0) = \infty$ , and  $J(\infty) = 0$ 

and it is an element in  $Homeo^{C}(\overline{\mathbb{C}})$ 

#### Proof

Let  $w = rac{1}{z}$  , then  $z = rac{1}{w}$  ,put it into equation (1)

We have, 
$$\alpha \frac{1}{w} \frac{\overline{1}}{w} + \beta \frac{1}{w} + \overline{\beta} \frac{\overline{1}}{w} + \gamma = 0$$

Multiply both sides by  $w\overline{w}$ 

Then we have,

$$\alpha + \beta \overline{w} + \overline{\beta} w + \gamma w \overline{w} = 0$$

Then it satisfy the equation of the circle in  $\mathbb C$ .

# Definiton

A Möbius transformation is a function  $M: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ 

$$M(z) = \frac{az+b}{cz+d}$$

where a, b, c, d are complex constants and  $ad-bc \neq 0$ .

# Some remarks for $M(\infty)$ and M(0)

For  $M(\infty)$  ,

$$M(\infty) = \lim_{z \to \infty} \frac{az+b}{cz+d} = \frac{a}{c}$$

Since a or c cannot be both zero by the assumption  $ad-bc \neq 0$ , then it is well defined. Also, it equals to  $\infty$  if and only if c=0.

For *M*(0),

$$M(0) = \frac{b}{d}$$

Then we have M(0)=0 if and only if b=0

# Theorm

Consider the Möbius transformations,

If c=0, 
$$M(z) = \frac{a}{d}z + \frac{b}{d}$$

If 
$$c \neq 0, M(z) = f(J(g(z)))$$
, where  $g(z) = c^2z + cd$  and  $f(z) = -(ad - bc)z + \frac{a}{c}$ 

#### Proof

For c = 0, it is a direct computation. For  $c \neq 0$ ,  $M(z) = \frac{az+b}{cz+d} = \frac{acz+bc}{c^2z+dc} = \frac{acz+ad-ad+bc}{c^2z+dc} = \frac{a}{c} - \frac{ad-bc}{c^2z+dc}$ Then we have  $g(z) = c^2z + cd$  and  $f(z) = -(ad-bc)z + \frac{a}{c}$ Note that,  $J(z) = \frac{1}{z}$  for  $z \in \mathbb{C} - \{0\}, J(0) = \infty$ , and  $J(\infty) = 0$ 

Therefore, M(z) = f(J(g(z)))

# By previous example

The element f of  $_{Homeo}(\overline{\mathbb{C}})$  is defined by

f(z) = az + b for  $z \in \mathbb{C}$  and  $f(\infty) = \infty$ 

where  $a, b \in \mathbb{C}$  and  $a \neq 0$ , and it is an element in  $Homeo^{\mathbb{C}}(\overline{\mathbb{C}})$ 

The element J of  $Homeo(\overline{\mathbb{C}})$  defined by  $J(z) = \frac{1}{z}$  for  $z \in \mathbb{C} - \{0\}, J(0) = \infty$ , and  $J(\infty) = 0$ and it is an element in  $Homeo^{C}(\overline{\mathbb{C}})$ 

# Corollary

1.  $\operatorname{M\"ob}^{+} \subset Homeo(\overline{\mathbb{C}})$ 

Since by the previous theorem, we know that Möbius transformations is a composition of homeomorphisms, therefore it is a subset of  $Homeo(\overline{\mathbb{C}})$ 

2.  $\mathsf{M\"ob}^+ \subset Homeo^C(\overline{\mathbb{C}})$ 

Since Möbius transformations is a composition of functions which have a property that take circle in  $\overline{\mathbb{C}}$  to circles in  $\overline{\mathbb{C}}$ 

# Example when ad-bc = 0

Let 
$$p: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$$
  
 $p = \frac{az+b}{cz+d}$ , where  $a,b,c,d \in \mathbb{C}$  and  $ad-bc = 0$ 

Then p is not a homeomorphism of  $\overline{\mathbb{C}}$ 

#### Proof

We have ad - bc = 0, then ad = bc,

$$p = \frac{az+b}{cz+d} = \frac{a^2z+ba}{acz+da} = \frac{a^2z+ba}{acz+bc} = \frac{a}{c}$$

#### Therefore it is a constant function

# Theorem

Let M(z) be a Möbius transformation and  $M(0,1,\infty)=(0,1,\infty)$ 

Then M is an identity transformation. M(z) = z for any z in  $\overline{\mathbb{C}}$ 

#### Proof

We have 
$$M(z) = \frac{az+b}{cz+d}$$
  
 $For z = 0, M(0) = 0 \Leftrightarrow b = 0$   
 $For z = 1, M(1) = 1 \Leftrightarrow a = d$   
 $For z = \infty, M(\infty) = \infty \Leftrightarrow c = 0$   
Then,  $M(z) = \frac{az}{a} = z$ 

# 2. Transitivity Properties



Möb<sup>+</sup> acts uniquely triply transitivty on  $\overline{\mathbb{C}}$ 

#### Proof

#### First, prove the uniqueness

Let  $(z_1, z_2, z_3), (w_1, w_2, w_3)$  be distinct point in  $\overline{\mathbb{C}}$ .

Let n, m are elements in Möb<sup>+</sup> such that

 $n(z_1) = w_1 = m(z_1), n(z_2) = w_2 = m(z_2), n(z_3) = w_3 = m(z_3)$ Then  $m^{-1} \circ n$  is an identity

By the previous theorem, we know that is identity.

Then m = n

# Continue

Now, prove the existence.

Let  $(z_1, z_2, z_3)$  be distinct point in  $\overline{\mathbb{C}}$ .

Now, we need to construct a Möbius transformation m such that

 $m(z_1) = 0, m(z_2) = 1, m(z_3) = \infty$ 

Then, Let 
$$m = \frac{z - z_1}{z - z_3} \frac{z_2 - z_3}{z_2 - z_1}$$
  
 $m = \frac{z(z_2 - z_3) + z_1(z_3 - z_2)}{z(z_2 - z_1) + z_3(z_1 - z_2)}$ 

Then 
$$a = z_2 - z_3, b = z_1(z_3 - z_2), c = (z_2 - z_1), d = z_3(z_1 - z_2)$$

They are complex constant and  $ac - bd \neq 0$ 



A group G acts on a set X if there is a homomorphism from G in to the group bij(X) of bijections of X

#### Definition

G acts transitively on X if for each pair x and y of elements of X, there exist some element g of G satisfying g(x) = y

#### Lemma

Suppose a group G acts on a set X, and let  $x_0$  be a point of X. Suppose for each point y of X, there exists an element g of G so that  $g(y) = x_0$ . Then, G acts transitively on a set X

### Proof of lemma

Let x, y be the element in X and  $g_x, g_y$  be the element in G such that

$$g_y(y) = x_0 = g_x(x), x = g_x^{-1}(x_0) = g_x^{-1} \circ g_y(y)$$

Since x, y is a pair of element in X and  $g_x^{-1} \circ g_y$  is an element in G Therefore, it is transitively

It also proves that G acts uniquely transitively on a set X



Möb<sup>+</sup> acts transitively on the set  $\mathcal{C}$  on circles in  $\overline{\mathbb{C}}$ 

#### proof

First, we need to show the fact that any triple of distinct points in  $\overline{\mathbb{C}}$  defines a unique circle in  $\overline{\mathbb{C}}$ 

Let  $(z_1, z_2, z_3)$  be distinct points of  $\overline{\mathbb{C}}$ .

If they are not collinear, then there exist a unique **Euclidean circle** passing through all three points.

If they are collinear, then there exists a unique **Euclidean line** passing through all three. If one of the $(z_1, z_2, z_3)$  is  $\infty$ , then there is a unique **Euclidean line** passing through the other two.



#### Let A, B be circles in $\overline{\mathbb{C}}$

Choose a triple distinct points on A and B respectively.

Let m be the Möbius transformations taking the triple of distinct points determining A to the

triple of distinct points determining B.

As m(A) and B are two circles in  $\overline{\mathbb{C}}$  that pass through the same triple of distinct points, we have that m(A) = B

### Example(show the action is not uniquely transitive)

Let  $(z_1, z_2, z_3)$  be a triple of distinct points and let A be the circle in  $\overline{\mathbb{C}}$  determined by  $(z_1, z_2, z_3)$ 

Then the identity takes A to A.

The Möbius transformations taking  $(z_1,z_2,z_3)$  to  $(z_1,z_3,z_2)$  is also takes A to A



 $\mathsf{M\ddot{o}b}^+$  acts transitively on the set  $\mathcal{D}$  on discs in  $\overline{\mathbb{C}}$ 

Proof

First, recall the definition of disc

Define a disc in  $\overline{\mathbb{C}}$  to be one of the components of the complement in  $\overline{\mathbb{C}}$  of a circle in  $\overline{\mathbb{C}}$ 

Note that every disc in  $\overline{\mathbb{C}}$  determines a unique circle in  $\overline{\mathbb{C}}$ , and that every circle in  $\overline{\mathbb{C}}$  determines two disjoint discs in  $\overline{\mathbb{C}}$ .

Then,

Let A, B be two discs in  $\overline{\mathbb{C}}$  , where A is determined by circle  $C_A$  and B is determined by circle  $C_B$ 

# Continue

Note that, m(A) can either produce B or the other disc determined by  $C_B$ 

Case 1: If m(A)=B, we proved the theorem.

Case2:

Recall  $J(z) = \frac{1}{z}, J(0) = \infty, J(\infty) = 0, J(1) = 1$ 

Then J takes  $\overline{\mathbb{R}}$  to itself, so J interchanges two discs determined by  $\overline{\mathbb{R}}$ 

Now, let n be a Möbius transformations such that  $n(A) = \overline{\mathbb{R}}$ 

Then,  $n^{-1} \circ J \circ n$  takes A to itself and interchanges two discs determined by A.

# 3. Transformation

# Definition

Two Möbius transformations  $m_1, m_2$  are conjugate if there exist some Möbius transformations p so that  $m_2 = p \circ m_1 \circ p^{-1}$ 

# Definition

A *fixed point* of the Möbius transformations m is a point z of satisfying m(z) = z, where m is not an identity

#### Theorem

Suppose m and n are Möbius transformations that are conjugate. Then, m and n have the same number of fixed points in  $\overline{\mathbb{C}}$ 

### proof

Since m and n are conjugate , then by definition. There is a Möbius transformations *p* such that

$$m=p\circ~n\circ~p^{-1}$$
 and  $n=p^{-1}\circ~m\circ~p$ 

If n fixes a point x in  $\overline{\mathbb{C}}$  , then  $m = p \circ n \circ p^{-1}$  fixes p(x)

$$m(p(x)) = p \circ n \circ p^{-1}(p(x)) = p(n(x)) = p(x)$$

If m fixes a point y in  $\overline{\mathbb{C}}$  , then n fixes  $\ p^{-1}(y)$ 

$$n(p^{-1}(y)) = p^{-1} \circ m \circ p(p^{-1}(y)) = p^{-1}(m(y)) = p^{-1}(y)$$

Therefore, they have the same number of fixed points

# Conjugate a Möbius transformations into a standard form

Suppose m is not an identity.

Suppose x is the only fixed point of m in  $\overline{\mathbb{C}}$ 

Let y be any point on  $\overline{\mathbb{C}}$  but not equal to x.

Then (x, y, m(y)) is a triple of distinct points of  $\overline{\mathbb{C}}$ 

Let p be the Möbius transformations taking (x,y,m(y)) to  $(\infty,0,1)$ 

We have,

$$p \circ m \circ p^{-1}(\infty) = p(m(x)) = p(x) = \infty$$
  
Since x is a fixed point and  $m(x) = x$ 

# Continue

Since  $p \circ m \circ p^{-1}$  only fixed on  $\infty$ 

Then,

Let 
$$p \circ m \circ p^{-1}(z) = az + b$$
 for some  $a \neq 0$ 

$$p \circ m \circ p^{-1}(0) = p(m(y)) = 1$$
, then  $b = 1$ 

Since there is no solution for  $p \circ m \circ p^{-1}(z) = z$  in  $\mathbb{C}$  then a = 1

We have  $n = p \circ m \circ p^{-1}(z) = z + 1$  and it is the standard form of n

# Example

Find the Möbius transformation p conjugating m to its standard form when  $m(z) = \frac{z}{z+1}$ 

#### Answer

```
Let m(z) = \frac{z}{z+1}

First, we need to find the fixed point.

Let m(z) = z,

\frac{z}{z+1} = z

z^2 + z = z

Then, the only fixed point of m is 0
```

Now, choose some point in  $\overline{\mathbb{C}}$  but not equal to 0 Since we have  $m(\infty) = 1$ ,

We can take p to be the Möbius transformation from the triple of  $(0,\infty,1)$  to the triple of  $(\infty,0,1)$ 

Then we have  $p(z) = \frac{1}{z}$ 

# Case on two fixed points

Suppose x and y are two fixed points of m in  $\overline{\mathbb{C}}$ 

Let q be a Möbius transformation such that q(x) = 0 and  $q(y) = \infty$ 

By definition,  $q \circ m \circ q^{-1}(\infty) = q(m(y)) = q(y) = \infty$ 

$$q \circ m \circ q^{-1}(0) = q(m(x)) = q(x) = 0$$

Then we may write,

 $q \circ m \circ q^{-1}(z) = az$ , for some elements in  $\mathbb{C}$  but not equal to 0 or 1

And a is called as the multiplier of m
### Example

Find the Möbius transformation q conjugating m to its standard form and multipier of m when  $m(z) = \frac{2z+1}{z+1}$ 

#### Answer

Let 
$$m(z) = \frac{2z+1}{z+1}$$
  
First, find the fixed points.  
 $m(z) = \frac{2z+1}{z+1} = z$   
 $z^2 - z - 1 = 0$   
 $z = \frac{1}{2}(1 \pm \sqrt{5})$ 

Let q to be the Möbius transformation from  $(\frac{1}{2}(1+\sqrt{5}),\frac{1}{2}(1-\sqrt{5}))$  to  $(0,\infty)$  Then,

$$q(z) = \frac{z - \frac{1}{2}(1 + \sqrt{5})}{z - \frac{1}{2}(1 - \sqrt{5})}$$

Note that,  $q^{-1}(1) = \infty$  and  $m(\infty) = 2$ 

then we have the multiplier of m

$$= q \circ m \circ q^{-1}(1) = q(m(\infty)) = q(2) = \frac{3-\sqrt{5}}{3+\sqrt{5}}$$

#### Example

Let m be a Möbius transformation with two fixed points x and y. Prove that if  $n_1$  and  $n_2$  are two Möbius transformations satisfying  $n_1(x) = 0 = n_2(x)$  and  $n_1(y) = \infty = n_2(y)$ , then the multipliers of  $n_1 \circ m \circ n_1^{-1} = n_2 \circ m \circ n_2^{-1}$ 

#### Answer

Let  $n_1 \circ m \circ n_1^{-1}(z) = az$  and  $n_2 \circ m \circ n_2^{-1}(z) = bz$ Since we have  $n_2^{-1}(n_1(x)) = 0$  and  $n_2^{-1}(n_1(y)) = \infty$ Let  $p(z) = n_2(n_1^{-1}(z)) = cz$  for some c in  $\mathbb{C}$  but not equal to 0 or 1  $bz = n_2 \circ m \circ n_2^{-1}(z)$  $= p \circ n_1 \circ m \circ n_1^{-1} \circ p^{-1}(z)$  $= p(\frac{a}{c}z) = az$ 

#### Example

Using the notation of the argument just given for Möbius transformations with two fixed points, prove that if we conjugate m as above by a Möbius transformation s satisfying  $s(x) = \infty$  and s(y) = 0, the multipliph of  $s^{-1} = \frac{1}{a}$ 

#### Answer

Let s be a Möbius transformation taking (x, y) to  $(\infty, 0)$ and q be a Möbius transformation taking (x, y) to  $(0, \infty)$ 

Let  $q \circ m \circ q^{-1}(z) = az$ 

Note that,  $J(z) = \frac{1}{z}$  then  $s = J \circ q$  $s \circ m \circ s^{-1}(z) = J \circ q \circ m \circ q^{-1} \circ J = \frac{1}{a}z$ 

# 4. Reflection

# **Complex Conjugation**

Consider the simplest homeomorphism of  $\overline{\mathbb{C}}$  not already in Möb<sup>+</sup>: complex conjugation. The function  $C:\overline{\mathbb{C}}\to\overline{\mathbb{C}}$  defined by

$$C(z) = \overline{z}$$
 for  $z \in \mathbb{C}$  and  $C(\infty) = \infty$ 

is an element of Homeo( $\overline{\mathbb{C}}$ ).

#### Proof

```
Note that C(\overline{z}) = z and C(\infty) = \infty,
Hence C^{-1}(z) = C(z).
Hence C is a bijection of \overline{\mathbb{C}}.
```

Let  $z \in \overline{\mathbb{C}}$ .

For any 
$$arepsilon \, > \, 0$$
,  $\, C(U_arepsilon(z)) \, = \, U_arepsilon(C(z))$  .

Hence C is continuous.

```
Therefore, C is an element of Homeo(\overline{\mathbb{C}}).
```

# Definition

# Möb

The general Möbius group Möb is the group generated by Möb<sup>+</sup> and C.

i.e. Every (nontrivial) element p of Möb can be expressed as a composition:

$$p = C \circ m_k \circ \cdots \circ C \circ m_1$$

for some  $k \ge 1$ , where each  $m_k$  is an element of Möb<sup>+</sup>.

# Theorem

#### $\mathrm{M\ddot{o}b}\subset\mathrm{Homeo}^{\mathrm{C}}(\overline{\mathbb{C}}).$

#### Proof

We have already proved that the elements of  $\text{M\"ob}^+$  lie in  $\text{Homeo}^{\mathbb{C}}(\overline{\mathbb{C}})$  before. Thus, we only have to prove that  $C: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$  lies in  $\text{Homeo}^{\mathbb{C}}(\overline{\mathbb{C}})$  to complete the proof.

Let A be a circle in  $\overline{\mathbb{C}}$ .

Suppose A is given by the equation  $\alpha z\overline{z} + \beta z + \overline{\beta}\overline{z} + \gamma = 0$ .

Set  $w = C(z) = \overline{z}$ .

Then  $z = \overline{w}$ .

Hence w satisfies the equation  $\alpha w \overline{w} + \overline{\beta} w + \beta \overline{w} + \gamma = 0$ , which is a circle in  $\overline{\mathbb{C}}$ .

Then,  $C: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$  lies in Homeo<sup>C</sup>( $\overline{\mathbb{C}}$ ).

Therefore,  $M\ddot{o}b \subset Homeo^{\mathbb{C}}(\overline{\mathbb{C}})$ .

### Theorem

Every element of Möb has either the form:  $m(z) = \frac{az+b}{cz+d}$  or  $n(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$ , where  $a, b, c, d \in \mathbb{C}$  and  $ad - bc \neq 0$ .

Note that the composition of two Möbius transformations is again a Möbius transformation.

Let 
$$m(z) = \frac{az+b}{cz+d}$$
,  $n(z) = \frac{\alpha\overline{z}+\beta}{\gamma\overline{z}+\delta}$  and  $p(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$ ,  
Then  $(m \circ C)(z) = m(\overline{z}) = \frac{a\overline{z}+b}{c\overline{z}+d}$ ,  $(m \circ n)(z) = \frac{(a\alpha + b\gamma)\overline{z} + a\beta + b\delta}{(c\alpha + d\gamma)\overline{z} + c\beta + d\delta}$  and  $(p \circ n)(z) = \frac{(a\overline{\alpha} + b\overline{\gamma})z + a\overline{\beta} + b\overline{\delta}}{(c\overline{\alpha} + d\overline{\gamma})z + c\overline{\beta} + d\overline{\delta}}$ 

Therefore, it has the desired form for all cases.

## Reflection

Geometrically, the action of C on  $\overline{\mathbb{C}}$  is reflection in the extended real axis  $\overline{\mathbb{R}}$ .

Given we have defined reflection in  $\overline{\mathbb{R}}$ , and given Möb acts transitively on the set  $\mathcal{C}$  of circles in  $\overline{\mathbb{C}}$ , we are able to define reflection in any circle in  $\overline{\mathbb{C}}$ .

Particularly, let A be a circle in  $\overline{\mathbb{C}}$ , we can choose an element m of Möb taking to A, and define reflection in A to be the composition:

$$C_A = m \circ C \circ m^{-1}$$



### Example

Let  $A = \mathbb{S}^1$ ,

Let m(z) be an element of Möb taking  $\mathbb{R}$  to S which is the transformation taking the triple (0, 1,  $\infty$ ) to the triple (i, 1, -i),

Take 
$$m(z) = rac{rac{1}{\sqrt{2}}z + rac{i}{\sqrt{2}}}{rac{i}{\sqrt{2}}z + rac{1}{\sqrt{2}}}.$$

Calculating, 
$$C_A(z)=m\circ C\circ m^{-1}(z)=rac{1}{\overline{z}}=rac{z}{|z|^2}.$$

# Proposition

Every element of Möb can be expressed as the composition of reflections in finitely many circles in  $\overline{\mathbb{C}}$ .

#### Proof

Note that Möb is generated by Möb<sup>+</sup> and  $C(z) = \overline{z}$ , and as Möb<sup>+</sup> is generated by  $J(z) = \frac{1}{z}$ and f(z) = az + b for  $a, b \in \mathbb{C}$  with  $a \neq 0$ , we only have to verify the proposition for C(z), J(z) and f(z).

For C(z), C(z) is a reflection by definition.

For J(z), J(z) can be expressed by the composition  $C(z) = \overline{z}$  and the reflection  $c(z) = \frac{1}{\overline{z}}$  in  $\mathbb{S}^1$ .

For f(z), f(z) is the composition of L(z) = az and P(z) = z + b, so what we left is to verify the proposition for L(z) and P(z).

For P(z) = z + b, let  $b = \beta e^{i\varphi}$ , let  $\ell$  be the Euclidean line passing through 0 and b, We express translation along  $\ell$  as the reflection in two lines A and B perpendicular to  $\ell$ , with A passing through 0 and B passing through  $\frac{1}{2}b$ .

Set  $\theta = \varphi - \frac{1}{2}\pi$ . Then we have:  $C_A(z) = e^{2i\theta}\overline{z} = -e^{2i\varphi}\overline{z}$  and  $C_B(z) = -e^{2i\varphi}\left(\overline{z} - \frac{1}{2}\overline{b}\right) + \frac{1}{2}b$ Therefore,  $(C_B \circ C_A)(z) = C_B(-e^{2i\varphi}\overline{z}) = -e^{2i\varphi}\left(-e^{-2i\varphi}z - \frac{1}{2}\overline{b}\right) + \frac{1}{2}b = z + b$ . For L(z) = az, let  $a = \alpha^2 e^{2i\theta}$ , then L(z) is the composition of  $D(z) = \alpha^2 z$  and  $E(z) = e^{2i\theta}z$ . For D(z), D(z) can be expressed by the composition of the reflection  $c(z) = \frac{1}{\overline{z}}$  in  $\mathbb{S}^1$  and the reflection  $c_2(z) = \frac{\alpha^2}{\overline{z}}$  in the Euclidean circle with Euclidean centre 0 and Euclidean radius  $\alpha$ . For E(z), E(z) can be expressed by the composition of the reflection  $C(z) = \overline{z}$  in  $\mathbb{R}$  and the reflection  $C_2(z) = e^{i\theta}\overline{z}$  in the Euclidean line through 0 making angle  $\theta$  with  $\mathbb{R}$ .

Combining the result of the above cases, we have: every element of Möb can be expressed as the composition of reflections in finitely many circles in  $\overline{\mathbb{C}}$ .

## Theorem

#### $M\ddot{o}b = Homeo^{C}(\overline{\mathbb{C}}).$

Proof

We have proved that  $\operatorname{M\ddot{o}b} \subset \operatorname{Homeo}^{\mathbb{C}}(\overline{\mathbb{C}})$ . What we left is to prove  $\operatorname{Homeo}^{\mathbb{C}}(\overline{\mathbb{C}}) \subset \operatorname{M\ddot{o}b}$ . Let  $f \in \operatorname{Homeo}^{\mathbb{C}}(\overline{\mathbb{C}})$ , let p be the Möbius transformation taking  $(f(0), f(1), f(\infty))$  to  $(0, 1, \infty)$ . Then,  $p \circ f(0) = 0$ ,  $p \circ f(1) = 1$ , and  $p \circ f(\infty) = \infty$ . Note that  $p \circ f$  takes circles in  $\overline{\mathbb{C}}$  to circles in  $\overline{\mathbb{C}}$ . Since  $p \circ f$  takes circles in  $\overline{\mathbb{C}}$  to circle in  $\overline{\mathbb{C}}$  determined by  $(0, 1, \infty)$ , we have  $p \circ f(\mathbb{R}) = \mathbb{R}$ . Since  $p \circ f(\infty) = \infty$  and  $\overline{\mathbb{R}}$  is the circle in  $\overline{\mathbb{C}}$  determined by  $(0, 1, \infty)$ , we have  $p \circ f(\mathbb{R}) = \mathbb{R}$ . Since  $p \circ f$  takes  $\mathbb{R}$  to  $\mathbb{R}$  and fixes  $\infty$ , we have either  $p \circ f(\mathbb{H}) = \mathbb{H}$  or is the lower half-plane. For  $p \circ f(\mathbb{H}) = \mathbb{H}$ , we set m = p. For the case of the lower half-plane, we set  $m = C \circ p$  with C being the complex conjugation. Then,  $m \circ f(0) = 0$ ,  $m \circ f(1) = 1$ ,  $m \circ f(\infty) = \infty$ , and  $m \circ f(\mathbb{H}) = \mathbb{H}$ .

Now, we want to prove that  $m \circ f$  is the identity.

We will prove this by constructing dense set of points in  $\overline{\mathbb{C}}$  such that each of which is fixed by  $m \circ f$ .

Set  $Z = \{ z \in \overline{\mathbb{C}} \mid m \circ f(z) = z \}.$ Then, 0, 1 and  $\infty$  are elements of Z. Since  $m \circ f$  fixes  $\infty$  and lies in Homeo<sup>C</sup>( $\overline{\mathbb{C}}$ )(0) = 0,  $m \circ f(1) = 1$ , we have  $m \circ f$  takes Euclidean lines in  $\overline{\mathbb{C}}$  to Euclidean lines in  $\overline{\mathbb{C}}$ , and  $m \circ f$  takes Euclidean circles in  $\overline{\mathbb{C}}$  to Euclidean circles in  $\overline{\mathbb{C}}$ . Suppose X and Y are two Euclidean lines in  $\overline{\mathbb{C}}$  that intersect at some point  $z_0$ , Further suppose that  $m \circ f(X) = X$  and  $m \circ f(Y) = Y$ , Then,  $m \circ f(z_0) = z_0$ . Hence,  $z_0 \in m \circ f$ . Let  $s \in \mathbb{R}$ , Let V(s) be the vertical line in  $\overline{\mathbb{C}}$  through s. Let H(s) be a horizontal line in  $\overline{\mathbb{C}}$  through is, where i is the imaginary unit. When s  $\neq$  0, since H(s) and  $\mathbb{R}$  are disjoint and  $m \circ f(\mathbb{R}) = \mathbb{R}$ , we have  $m \circ f(H)$  and  $m \circ f(\mathbb{R}) = \mathbb{R}$  are disjoint. Hence H(s) is against a horizontal line in  $\overline{\mathbb{C}}$ . Since  $m \circ f(\mathbb{H}) = \mathbb{H}$ , we have H(s) lies in  $\mathbb{H}$  if and only if  $m \circ f(H)$  lies in  $\mathbb{H}$ .

Let A be the Euclidean circle with Euclidean centre  $\frac{1}{2}$  and Euclidean radius  $\frac{1}{2}$ .

Then, V(0) is tangent to A at 0 and V(1) is tangent to A at 1.

Hence,  $m \circ f(V(0))$  and  $m \circ f(V(1))$  are the tangent lines to  $m \circ f(A)$  at 0 and 1 respectively

Since V(0) and V(1) are parallel Euclidean lines in  $\overline{\mathbb{C}}$ ,

we have  $m \circ f(V(0))$  and  $m \circ f(V(1))$  are parallel Euclidean lines in  $\overline{\mathbb{C}}$ .

Hence, 
$$m \circ f(V(0)) = V(0)$$
 and  $m \circ f(V(1)) = V(1)$ .

Since the tangent lines through 0 and 1 to any other Euclidean circle passing through 0 and 1 are not parallel, we have  $m \circ f(A) = A$ .

Here, we want to find more points of Z that A contains other than 0 and 1.

Consider  $H(\frac{1}{2})$  and  $H(-\frac{1}{2})$  , both of them are horizontal lines in  $\overline{\mathbb{C}}$  , We can see that  $H(\frac{1}{2})$  is tangent to A at  $\frac{1}{2} + \frac{1}{2}i$  and  $H(-\frac{1}{2})$  is tangent to A at  $-\frac{1}{2} + \frac{1}{2}i$ Since both of them are horizontal lines that tangent to  $m \circ f(A) = A$ , we have  $m \circ f(H(\frac{1}{2})) = H(\frac{1}{2})$  and  $m \circ f(H(-\frac{1}{2})) = H(-\frac{1}{2})$ . Thus, we have more points in Z, including:

 $H(\frac{1}{2}) \cap V(0) = \frac{1}{2}i$ ,  $H(\frac{1}{2}) \cap V(1) = 1 + \frac{1}{2}i$ ,  $H(-\frac{1}{2}) \cap V(0) = -\frac{1}{2}i$  and  $H(-\frac{1}{2}) \cap V(1) = 1 - \frac{1}{2}i$ 

Hence, Each pair of points in Z gives rise to a Euclidean line that is taken to itself by  $m \circ f$  .

Then, Each triple of noncollinear points in Z gives rise to a Euclidean circle that is taken to itself by  $m \circ f$ .

Thus, more points of Z are found.

Hence, more Euclidean lines and Euclidean circles taken to themselves.

Then, Z contains a dense set of points of  $\overline{\mathbb{C}}$  .

Thus,  $m \circ f$  is the identity.

Hence,  $f = m^{-1}$  is an element of Möb.

Therefore,  $\operatorname{Homeo}^{\operatorname{C}}(\overline{\mathbb{C}}) \subset \operatorname{M\"ob}$  .

Combining with  $\operatorname{M\ddot{o}b} \subset \operatorname{Homeo}^{\operatorname{C}}(\overline{\mathbb{C}})$ , we have  $\operatorname{M\ddot{o}b} = \operatorname{Homeo}^{\operatorname{C}}(\overline{\mathbb{C}})$ .

# 5. Conformality of elements

# Definition

 $angle(C_1, C_2)$ 

Let  $C_1$  and  $C_2$  be two smooth curves in C that intersect at a point  $z_0$  .

Define the angle angle  $(C_1, C_2)$  between  $C_1$  and  $C_2$  at  $z_0$ 

to be the angle between the tangent lines to  $C_1$  and  $C_2$  at  $z_0$ , measured from  $C_1$  to  $C_2$ .

We adopt the following convention:

counterclockwise angles are positive and clockwise angles are negative.

Hence,  $angle(C_1, C_2) = - angle(C_2, C_1)$ 



# Definition

Conformality

A homeomorphism of  $\overline{\mathbb{C}}$  that preserves the absolute value of the angle between curves is said to be conformal.

One major fact is that the elements of Möb are conformal.

## Theorem

The elements of Möb are conformal homeomorphisms of  $\, \overline{\mathbb{C}} \,$  .

#### Proof

let  $X_1$  and  $X_2$  be two Euclidean lines in  $\overline{\mathbb{C}}$  that intersect at a point  $z_0$ , let  $z_k$  be a point on  $X_k$  such that  $z_k \neq z_0$ , and let  $s_k$  be the slope of  $X_k$ .

Hence,  $s_k = \frac{\operatorname{Im}(z_k - z_0)}{\operatorname{Re}(z_k - z_0)}.$ 

Let  $\theta_k$  be the angle that  $X_k$  makes with the real axis  $\mathbb{R}$ ,

Then,  $s_k = \tan(\theta_k)$  and  $\operatorname{angle}(X_1, X_2) = \theta_2 - \theta_1 = \arctan(s_2) - \arctan(s_1)$ .

Note that Möb is generated by Möb<sup>+</sup> and  $C(z) = \overline{z}$ , and as Möb<sup>+</sup> is generated by  $J(z) = \frac{1}{z}$ and f(z) = az + b for  $a, b \in \mathbb{C}$  with  $a \neq 0$ , we only have to verify the proposition for C(z), J(z) and f(z).

For f(z) = az + b, write  $a = \rho e^{i\beta}$ . Since  $f(\infty) = \infty$ , we have  $f(X_1)$  and  $f(X_2)$  are against Euclidean lines in  $\mathbb{C}$ . Note that  $f(X_k)$  passes through the points  $f(z_0)$  and  $f(z_k)$ . Let  $t_k$  be the slope of  $f(X_k)$ ,

$$\begin{aligned} t_k &= \frac{\mathrm{Im}(f(z_k) - f(z_0))}{\mathrm{Re}(f(z_k) - f(z_0))} &= \frac{\mathrm{Im}(a(z_k - z_0))}{\mathrm{Re}(a(z_k - z_0))} \\ &= \frac{\mathrm{Im}(e^{i\beta}(z_k - z_0))}{\mathrm{Re}(e^{i\beta}(z_k - z_0))} = \tan(\beta + \theta_k) \end{aligned}$$

Hence,  $\operatorname{angle}(f(X_1), f(X_2)) = \operatorname{arctan}(t_2) - \operatorname{arctan}(t_1)$ =  $(\beta + \theta_2) - (\beta + \theta_1)$ =  $\theta_2 - \theta_1 = \operatorname{angle}(X_1, X_2)$ 

Therefore, f(z) is conformal.

For  $J(z) = \frac{1}{z}$ ,  $J(X_1)$  and  $J(X_2)$  may not only be two Euclidean lines in  $\mathbb{C}$ . They may be both Euclidean circles in  $\mathbb{C}$ , or may be one Euclidean line and one Euclidean circle. Here, we prove for the case that both of them are Euclidean circles in  $\mathbb{C}$ . We may suppose that  $X_k$  is given as the set of solutions to the following equation:

$$eta_k z + \overline{eta_k} \overline{z} + 1 = 0 \quad ext{where} \ \ eta_k \in \mathbb{C}$$
  
Let  $s_k$  be the slope of  $X_k$ , then  $s_k = rac{\operatorname{Re}(eta_k)}{\operatorname{Im}(eta_k)}$ .

Hence,  $J(X_k)$  can be given as the set of solutions to the following equation:

$$z\overline{z}+\overline{eta_k}z+eta_k\overline{z}=0$$
 , which is equivalent to  $|z+eta_k|^2=|eta_k|^2$ 

Thus, the slope of the tangent line to  $J(X_k)$  at 0 is  $-\frac{\operatorname{Re}(\beta_k)}{\operatorname{Im}(\beta_k)} = -\tan(\theta_k) = \tan(-\theta_k)$ 

Then,  $angle(J(X_1), J(X_2)) = -\theta_2 - (-\theta_1) = -angle(X_1, X_2)$ 

Hence, the absolute value of the angle between curves is preserved. Therefore, J(z) is conformal.

For  $C(z) = \overline{z}$ , since  $X_k$  passes through  $z_k$  and  $z_0$ , we have  $C(X_k)$  passes through  $C(z_0) = \overline{z_0}$  and  $C(z_k) = \overline{z_k}$ .

Let  $S_k$  be the slope of  $C(X_k)$ , then  $S_k = \frac{\operatorname{Im}(\overline{z_k} - \overline{z_0})}{\operatorname{Re}(\overline{z_k} - \overline{z_0})} = -\frac{\operatorname{Im}(z_k - z_0)}{\operatorname{Re}(z_k - z_0)} = -s_k$ .

Hence,  $\operatorname{angle}(C(X_1), C(X_2)) = \operatorname{arctan}(S_2) - \operatorname{arctan}(S_1)$ =  $-\operatorname{arctan}(s_2) + \operatorname{arctan}(s_1) = -\operatorname{angle}(X_1, X_2).$ 

Hence, the absolute value of the angle between curves is preserved. Therefore, C(z) is conformal.

Combining the result of the three above cases, we have: The elements of Möb are conformal homeomorphisms of  $\overline{\mathbb{C}}$ .

# 6. Preserving H and transitivity properties



In order to find transformations that take hyperbolic lines in  $\mathbb H$  to hyperbolic lines in  $\mathbb H$ ,

Let's consider the following group:

$$\operatorname{M\"ob}(\mathbb{H}) = \{ m \in \operatorname{M\"ob} \mid m(\mathbb{H}) = \mathbb{H} \}.$$



Every element of  $M\ddot{o}b(\mathbb{H})$  takes hyperbolic lines in  $\mathbb{H}$  to hyperbolic lines in  $\mathbb{H}$ .

#### Proof

The proof of this theorem is the immediate consequence of the previous theorem:

The elements of Möb are conformal homeomorphisms of  $\overline{\mathbb{C}}$ .

#### That is:

- 1) The elements of  $M\ddot{o}b(\mathbb{H})$  preserve angles between circles in  $\overline{\mathbb{C}}$
- 2) Every hyperbolic line in  $\mathbb{H}$  is the intersection of  $\mathbb{H}$  with a circle in  $\overline{\mathbb{C}}$  perpendicular to  $\overline{\mathbb{R}}$
- 3) Every element of Möb takes circles in  $\overline{\mathbb{C}}$  to circles in  $\overline{\mathbb{C}}$ .

# Definition

Let's consider the following groups:

$$\begin{array}{l} \operatorname{M\"ob}(\overline{\mathbb{R}}) = \{m \in \operatorname{M\"ob} \mid m(\overline{\mathbb{R}}) = \overline{\mathbb{R}}\} \\ \downarrow \\ \operatorname{M\"ob}(\mathbb{H}) = \{m \in \operatorname{M\"ob} \mid m(\mathbb{H}) = \mathbb{H}\} \\ \downarrow \\ \\ \operatorname{M\"ob}^+(\mathbb{H}) = \{m \in \operatorname{M\"ob}^+ \mid m(\mathbb{H}) = \mathbb{H}\} \end{array}$$

# **Recall: Theorem**

Every element of Möb has either the form:  $m(z) = \frac{az+b}{cz+d}$  or  $n(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$ , where  $a, b, c, d \in \mathbb{C}$  and  $ad - bc \neq 0$ .

Note that the composition of two Möbius transformations is again a Möbius transformation.

Let 
$$m(z) = \frac{az+b}{cz+d}$$
,  $n(z) = \frac{\alpha\overline{z}+\beta}{\gamma\overline{z}+\delta}$  and  $p(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$ ,  
Then  $(m \circ C)(z) = m(\overline{z}) = \frac{a\overline{z}+b}{c\overline{z}+d}$ ,  $(m \circ n)(z) = \frac{(a\alpha + b\gamma)\overline{z} + a\beta + b\delta}{(c\alpha + d\gamma)\overline{z} + c\beta + d\delta}$  and  $(p \circ n)(z) = \frac{(a\overline{\alpha} + b\overline{\gamma})z + a\overline{\beta} + b\overline{\delta}}{(c\overline{\alpha} + d\overline{\gamma})z + c\overline{\beta} + d\overline{\delta}}$ 

Therefore, it has the desired form for all cases.

Every element of Möb has either the form:  $m(z) = \frac{az+b}{cz+d}$  or  $n(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$ , where  $a, b, c, d \in \mathbb{C}$  and  $ad - bc \neq 0$ . Since  $C(\overline{\mathbb{R}}) = \overline{\mathbb{R}}$ , we have  $m \circ C(z) = m(\overline{z}) = \frac{az+b}{cz+d}$ . Hence, we only have to consider  $m(z) = \frac{az+b}{cz+d}$  and limit the constraint to ad - bc = 1. Then,  $m^{-1}(\infty) = -\frac{d}{c}$ ,  $m(\infty) = \frac{a}{c}$ , and  $m^{-1}(0) = -\frac{b}{a}$  all lie in  $\overline{\mathbb{R}}$ .

Case 1: Suppose  $a \neq 0$  and  $c \neq 0$ ,

Hence 
$$a = m(\infty)c$$
,  $b = -m^{-1}(0)a = -m^{-1}(0)m(\infty)c$ , and  $d = -m^{-1}(\infty)c$ .  
Then  $m(z) = \frac{az+b}{cz+d} = \frac{m(\infty)cz - m^{-1}(0)m(\infty)c}{cz - m^{-1}(\infty)c}$   
Then,  $1 = ad - bc = c^2 \left[-m(\infty)m^{-1}(\infty) + m(\infty)m^{-1}(0)\right]$   
 $= c^2 \left[m(\infty)(m^{-1}(0) - m^{-1}(\infty))\right].$ 

Since  $m(\infty), m^{-1}(0)$ , and  $m^{-1}(\infty)$  are all real,

we have c is either real or purely imaginary.

Hence, a, b, c, and d are either all real or all purely imaginary.

Case 2: Suppose a = 0 ,

Hence  $c \neq 0$  and then  $m(1) = \frac{b}{c+d}$  and  $m^{-1}(\infty) = -\frac{d}{c}$ .

Then, 
$$d = -m^{-1}(\infty)c$$
 and  $b = m(1)(c+d) = (m(1) - m^{-1}(\infty))c$ .

Then, 
$$1 = ad - bc = (m^{-1}(\infty) - m(1))c^2$$
.

Then, c is either real or purely imaginary.

Hence, a, b, c, and d are either all real or all purely imaginary.

Case 3: Suppose  $\,c=0\,$  ,

Hence  $a \neq 0$  and  $d \neq 0$  and then both  $m(0) = \frac{b}{d}$  and  $m(1) = \frac{a+b}{d}$  are real.

Then, b = m(0)d and a = (m(1) - m(0))d.

Then,  $1 = ad - bc = (m(1) - m(0))d^2$ .

Then, d is either real or purely imaginary.

Hence, a, b, c, and d are either all real or all purely imaginary.

Conversely, suppose m has either the form  $m(z) = \frac{az+b}{cz+d}$  or  $m(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$  with ad-bc = 1

Further suppose  $a, b, c, ext{ and } d$  are either all real or all purely imaginary,

Then  $m(\infty),\ m^{-1}(0),\ {
m and}\ m^{-1}(\infty)$  are all lie on  $\overline{\mathbb{R}}$  ,

Therefore, m takes  $\overline{\mathbb{R}}$  to  $\overline{\mathbb{R}}$  .

### Theorem

Every element of  $\operatorname{M\"ob}(\overline{\mathbb{R}})$  has one of the following four forms:

Case 1: Suppose  $m(z) = \frac{az+b}{cz+d}$ , where a, b, c, and d are real such that ad - bc = 1.

Hence, 
$$\operatorname{Im}(m(i)) = \operatorname{Im}\left(\frac{ai+b}{ci+d}\right)$$
  
=  $\operatorname{Im}\left(\frac{(ai+b)(-ci+d)}{(ci+d)(-ci+d)}\right) = \frac{ad-bc}{c^2+d^2} = \frac{1}{c^2+d^2} > 0,$ 

Therefore,  $m \in \operatorname{M\ddot{o}b}(\mathbb{H})$  in this case.
Case 2: Suppose  $m(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$ , where a, b, c, and d are real such that ad - bc = 1.

$$\begin{array}{lll} \text{Hence, } \operatorname{Im}(m(i)) & = & \operatorname{Im}\left(\frac{-ai+b}{-ci+d}\right) \\ & = & \operatorname{Im}\left(\frac{(-ai+b)(ci+d)}{(-ci+d)(ci+d)}\right) = \frac{-ad+bc}{c^2+d^2} = \frac{-1}{c^2+d^2} < 0, \end{array}$$

Therefore,  $m \notin \mathrm{M\ddot{o}b}(\mathbb{H})$  in this case.

Case 3: Suppose  $m(z) = \frac{az+b}{cz+d}$ , where a, b, c, and d are purely imaginary such that ad - bc = 1.

Write 
$$a = \alpha i, \ b = \beta i, \ c = \gamma i, \ \mathrm{and} \ d = \delta i$$
 such that  $\alpha \delta - \beta \gamma = -1$ .

Hence, 
$$\operatorname{Im}(m(i)) = \operatorname{Im}\left(\frac{ai+b}{ci+d}\right) = \operatorname{Im}\left(\frac{-\alpha+\beta i}{-\gamma+\delta i}\right)$$
  
$$= \operatorname{Im}\left(\frac{(-\alpha+\beta i)(-\gamma-\delta i)}{(-\gamma+\delta i)(-\gamma-\delta i)}\right) = \frac{\alpha\delta-\beta\gamma}{\gamma^2+\delta^2} = \frac{-1}{\gamma^2+\delta^2} < 0,$$

Therefore,  $m \notin \operatorname{M\ddot{o}b}(\mathbb{H})$  in this case.

Case 4: Suppose  $m(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$ , where a, b, c, and d are purely imaginary such that ad - bc = 1.

Write 
$$a = \alpha i$$
,  $b = \beta i$ ,  $c = \gamma i$ , and  $d = \delta i$  such that  $\alpha \delta - \beta \gamma = -1$ .

Hence, 
$$\operatorname{Im}(m(i)) = \operatorname{Im}\left(\frac{-ai+b}{-ci+d}\right) = \operatorname{Im}\left(\frac{\alpha+\beta i}{\gamma+\delta i}\right)$$
  
$$= \operatorname{Im}\left(\frac{(\alpha+\beta i)(\gamma-\delta i)}{(\gamma+\delta i)(\gamma-\delta i)}\right) = \frac{-\alpha\delta+\beta\gamma}{\gamma^2+\delta^2} = \frac{1}{\gamma^2+\delta^2} > 0,$$

Therefore,  $m \in M\ddot{o}b(\mathbb{H})$  in this case.

### Theorem

Every element of  $M\ddot{o}b(\mathbb{H})$  has one of the following two forms:

1. 
$$m(z) = \frac{az+b}{cz+d}$$
, where  $a, b, c, d \in \mathbb{R}$  and  $ad - bc = 1$   
2.  $n(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$ , where  $a, b, c, d$  are purely imaginary and  $ad - bc = 1$ 

No element of  $M\ddot{o}b(\mathbb{H})$  of the form:

 $n(z) = \frac{a\overline{z} + b}{c\overline{z} + d}$ , where a, b, c, d are purely imaginary and ad - bc = 1 can be an element of  $M\ddot{o}b^+(\mathbb{H})$ .

### Theorem

Every element of  $M\ddot{o}b^+(\mathbb{H})$  has following form:

1. 
$$m(z) = \frac{az+b}{cz+d}$$
, where  $a, b, c, d \in \mathbb{R}$  and  $ad-bc = 1$ 

# Proposition

Reflection in a circle in  $\overline{\mathbb{C}}$  is well defined.

Proof

Let  $m \in \operatorname{M\"ob}(\overline{\mathbb{R}})$ , let  $C(z) = \overline{z}$ . For  $m(z) = \frac{az+b}{cz+d}$  with  $a, b, c, d \in \mathbb{R}$  and ad - bc = 1,  $C \circ m(z) = \frac{a\overline{z} + b}{c\overline{z} + d} = m \circ C(z)$ For  $m(z) = \frac{az+b}{cz+d}$  with a, b, c, d purely imaginary and ad - bc = 1,  $C \circ m(z) = \frac{-az-b}{-cz-d} = \frac{az+b}{cz+d} = m \circ C(z)$ Let A be a circle in  $\overline{\mathbb{C}}$ , let  $m, n \in M\"{ob}(\overline{\mathbb{R}})$ , both taking  $\overline{\mathbb{R}}$  to A. Then,  $n^{-1} \circ m$  takes  $\overline{\mathbb{R}}$  to  $\overline{\mathbb{R}}$ , thus  $n^{-1} \circ m = p$  for some element p of  $M\ddot{o}b(\overline{\mathbb{R}})$ . In particular,  $p \circ C = C \circ p$ . Write  $m = n \circ p$ .  $m \circ C \circ m^{-1} = n \circ p \circ C \circ p^{-1} \circ n^{-1} = n \circ p \circ p^{-1} \circ C \circ n^{-1} = n \circ C \circ n^{-1}$ Therefore, Reflection in a circle in  $\mathbb{C}$  is well defined.

# **Recall: Lemma**

A group G acts on a set X if there is a homomorphism from G in to the group bij(X) of bijections of X

#### Definition

G acts transitively on X if for each pair x and y of elements of X, there exist some element g of G satisfying g(x) = y

#### Lemma

Suppose a group G acts on a set X, and let  $x_0$  be a point of X. Suppose for each point y of X, there exists an element g of G so that  $g(y) = x_0$ . Then, G acts transitively on a set X

# Proposition

#### $M\ddot{o}b(\mathbb{H})$ acts transitively on $\mathbb{H}$ . Proof

Let  $w \in \mathbb{H}$ , it is sufficient to show that  $\exists m \in \operatorname{M\"ob}(\mathbb{H})$  such that m(w) = i. Let w = a + bi, where  $a, b \in \mathbb{R}$  and b > 0. Let p(z) = z - a, thus p(w) = p(a + bi) = bi. Let  $q(z) = \frac{1}{b}z$ , thus q(p(w)) = q(bi) = i. Note that  $-a \in \mathbb{R}$  and  $\frac{1}{b} > 0$ . Hence,  $p(z) \in \operatorname{M\"ob}(\mathbb{H})$  and  $q(z) \in \operatorname{M\"ob}(\mathbb{H})$ . Then,  $q \circ p(z) \in \operatorname{M\"ob}(\mathbb{H})$ .

Therefore,  $M\ddot{o}b(\mathbb{H})$  acts transitively on  $\mathbb{H}$ .

### Definition

Let  $\ell$  be a hyperbolic line in  ${\mathbb H}$  .

Open half-plane in  $\mathbb H$  : a component of the complement of  $\,\ell$  .

Closed half-plane in  $\mathbb H$  : the union of  $\ell$  with one of the open half- planes determined by  $\ell$  .

Half-plane in  $\mathbb{H}$ : either open half-plane or closed half-plane in  $\mathbb{H}$ .

# **Recall: Lemma**

A group G acts on a set X if there is a homomorphism from G in to the group bij(X) of bijections of X

#### Definition

G acts transitively on X if for each pair x and y of elements of X, there exist some element g of G satisfying g(x) = y

#### Lemma

Suppose a group G acts on a set X, and let  $x_0$  be a point of X. Suppose for each point y of X, there exists an element g of G so that  $g(y) = x_0$ . Then, G acts transitively on a set X

# Proposition

 $M\ddot{o}b(\mathbb{H})$  acts triply transitively on the set  $\mathcal{T}_{\overline{\mathbb{R}}}$  of triples of distinct points of  $\overline{\mathbb{R}}$ .

#### Proof

Let  $(z_1, z_2, z_3)$  be a triple of distinct points of  $\overline{\mathbb{R}}$ .

It is sufficient to prove that  $\exists m \in M\ddot{o}b(\mathbb{H})$  such that m takes $(z_1, z_2, z_3)$  to  $(0, 1, \infty)$ .

Let  $\ell$  be the hyperbolic line whose endpoints at infinity are  $z_1$  and  $z_3$ ,

Let m be an element of  $M\ddot{o}b(\mathbb{H})$  taking  $\ell$  to the positive imaginary axis I.

Assume that  $m(z_1) = 0$  and  $m(z_3) = \infty$  as we can composing m with  $K(z) = -\frac{1}{z}$  if necessary. Set  $b = m(z_2)$ .

If b > 0, then the composition of m with  $p(z) = \frac{1}{b}z$  takes  $(z_1, z_2, z_3)$  to  $(0, 1, \infty)$ .

If b < 0, then the composition of m with  $q(z) = \frac{1}{b}\overline{z}$  takes  $(z_1, z_2, z_3)$  to  $(0, 1, \infty)$ 

Therefore, $M\ddot{o}b(\mathbb{H})$  acts triply transitively on the set  $\mathcal{T}_{\overline{\mathbb{R}}}$  of triples of distinct points of  $\overline{\mathbb{R}}$ .

# 7. Conclusion

# We have talked about the following topics:

- 1. Transitivity
- 2. Transfomration
- 3. Relfection
- 4. Conformality of elements
- 5. Preserving H and transitivity properties

### 8. Reference

#### Reference

Hyperbolic geometry, by James W. Anderson, Springer, 1999.

https://math.stackexchange.com/questions/481631/circle-on-riemann-sphere/481645

https://en.wikipedia.org/wiki/Riemann\_sphere

# Thank you very much!