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1. Introduction




Definition
A function f : C — T is a homeomorphism if fis a bijection and if both f andf—lare continuous.

Note that,
Homeo(T) = { f:C —= C: fis homeomorphisms }

Let Homeo"(T) be a subset of the group Homeo(T) that contains all those homeomorphisms of T
taking the circle in T to circlein T




Recall Circle in Riemann Sphere




Circle in Riemann sphere




Example

1. There are some elements thatin Homeo(T) but not in Homeo®(T)

let f:C—T

Note that, f is bijective and both f and f~! are continuous. Therefore,f € Homeo(T) . However, since
the image of Runder f is not a circle in C . Therefore, it is not in Homeo®(T)




Example

2. The element f of Homgo(@ is defined by

flz)=az+b for 2€ Cand floc) =00

where @, be C and a # 0,and itis an elementin Homeo®(T)
Proof
Recall that the equation of the circle ing is in the form,
azZ+ P+ Bz 4+ =

where o,y € R and 3 € C and where o« # 0

Then every Euclidean line in T can be explained in the form,

ll'-}" + 02+ =
e T WA T |

where 3 € Cand~y € K

Now, we need to show f satisfies these equations

(1)

(2)




Proof

let w =az+b,then , _

w —b

e

Put ._ %Y~ b into the equation (2)

— ~ Blw—=10)  Blw—0b)

‘3: + ,‘33 - = + + 'Tl"
. ‘ a €
3 3 3 3
=—w+ —wW——b——b+~
( ( 4 (1

=0

This shows that w also satisfies the equation of a Euclidean line in C




Continue

let w =az+b,then , _ w—>b

e

—b

(L

w

into the equation (1)

1

azZ + Bz + Pz +7

al(w—b)
a

= %Lu - b)w — b+ gﬁa‘{w _ b)
la| a

— L,)((w — b+ i)(w — b+ Ta)
(L]" 0 0
o Ba b2
R P L
la|” a8 a

1
a(w—b)+[}a

Then it satisfy the equation of the circle in .

(w—0b) + B%(w -b)+7

+ 2Fa(@—h) + = Bl’a _ _a |5’
[

+
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Example

3. The element J of Homeo(T)defined by J(z) =

and itis an element in Homeo®(T)

Proof

Let w =

e | =

1
,then z = —
u

We have, 11
ﬂ——-{-lj +13—+"—U
ww w
Multiply both sides by ww
Then we have,

a + BT + Bw + YT =0

Then it satisfy the equation of the circle in C .

Lo

,put it into equation (1)

-..s

~

€ C—{0}.J(0) =00, and J(oc) =0




Definiton

A Mébius transformation is a function M : C —= T

az + b

Miz) = cz+d

where a, b, ¢, d are complex constants and ad-bc # 0.




Some remarks for M() and M(0)

For M(~c),
az +b (

M(oc) = lim

—xez+d o c

Since a or c cannot be both zero by the assumption ad-bc # 0, then it is well defined.
Also, it equals to oo if and only if c=0.

For M(0),
d

Then we have M(0)=0 if and only if b=0




Theorm

Consider the Mo6bius transformations,

a . b
d- " d

Ifc=0, M(z) =

If ¢#0,M(z) = f(J(g(2))), where g(z) =c*z +ecd and f(2) = —(ad —be)z + ¢

C

Proof

Forc=0,itisa direct computation.

For ¢ # (), M (=) = az+b acz+bc  acz+ad—ad+bec  a ad—be
M) = cz+d 2z +de 2z + dc T ¢ Ertde

a
Then we have g(z) =c?z +¢cd and  f(z2) = —(ad — be)z +£
Note that,

J(z)= r 2 C—{0}.J(0) =oc, and J(x) =0

(flh—-\—/

Therefore, M(z) =




By previous example

The element [ of Homeo(T) is defined by

flz)=az+b for 2€ Cand floo) =00

where a,be C and a # 0,and itis an elementin Homeo®(T)

The element J of Homeo(T) defined by.J(z) = L for z € C—{0}.J(0) = oc. and J(x) =0

and it is an element in  Homeo®(T)




Corollary

1. Méb* ¢ Homeol(T)

Since by the previous theorem, we know that Md6bius transformations is a composition of
homeomorphisms, therefore it is a subset of Homeo(T)

2. Méb* C Homeo"(T)

Since Mobius transformations is a composition of functions which have a property that take
circlein 7 tocirclesin ¥




Example when ad-bc =0

Let p:C—=T

az+b
cz +d

. where a.b.c.d € C and ad — be =0

Then p is not a homeomorphism of

Proof

We have ad — be = 0. thenad = be.

az +b B a2z + ba a2z + ba

cz+d acz+da acz+be

a
T c

Therefore it is a constant function




Theorem
Let M(z) be a Mdbius transformation and M (0. 1. oc) = (0. 1. 0¢)

Then M is an identiy transformation. M(z) =z forany zin T

Proof

C e az+b
We have M(z) = pr——
Forz=0M0)=0&b=0
Forz=1M(l)=1a=d
Forz=o0, M(x)=x&c=0
az

Then, M{z) = —

)

o
~t




2. Transitivity Properties




Properties

=
f

Mob* acts uniquely triply transitivty on C

Proof
First, prove the uniqueness

f
| P

Let (z1.29.23). (wy.ws, wy) be distinct point in C
Let n, m are elements in Mob" such that

n(z1) =wy; = m(21).n(22) = wy = m(22).n(23) = wy = m(z3)
Then m ™! en is an identity

By the previous theorem, we know that is identity.

Thenm=n




Continue

Now, prove the existence.

i
‘3

Let (z1.29.23) be distinct point in C

Now, we need to construct a Moébius transformation m such that

m(zy) = 0,m(2p) = L.m(z3) = ¢

~ -~ ~

-1k 33
Then. Let m =

= X322 — X
z(22 — 23) + 21(23 — 22)
222 — 21) +23(21 — 22)

Then a= 2y — 23, b= :'1(;-:3 — :‘g)? = (:‘g - ;-:'1), d= 232 — :‘g)

They are complex constant and ac — bd # 0




Definition
A group G acts on a set X if there is a homomorphism from G in to the group bij(X) of bijections of X

Definition

G acts transitively on X if for each pair x and y of elements of X, there exist some element g of G
satisfying g(x) =y

Lemma
Suppose a group G acts on a set X, and let x;,be a point of X. Suppose for each point y of X,

there exists an element g of G so that (%) = 0. Then, G acts transitively on a set X




Proof of lemma

Let x, y be the element in X and g,, g,be the element in G such that

gy(:y) = Ty = g=(),
T = g;l(;”l?g) i 9.;1 o gy(y)

Since x, v is a pair of element in X and g, ' o g, is an element in G
Therefore, it is transitively

It also proves that G acts uniquely transitively on a set X




Theorem

Mob™ acts transitively on the set C on circles in["

proof

First, we need to show the fact that any triple of distinct points in T defines a unique
circlein C

Let (z,, z,, z;) be distinct points of T .

If they are not collinear, then there exist a unigque Euclidean circle passing through all
three points.

If they are collinear, then there exists a unique Euclidean line passing through all three.
If one of the(z1. 22, 23)is ©C , then there is a unique Euclidean line passing through the
other two.




Continue

Fal

Let A, B be circles in C
Choose a triple distinct points on A and B respectively.
Let m be the Mobius transformations taking the triple of distinct points determining A to the
triple of distinct points determining B.

As m(A) and B are two circles in T that pass through the same triple of distinct points, we have
that m(A) =B




Example(show the action is not uniquely transitive)

Let (:31, Z2, :3)be a triple of distinct points and let A be the circle in C determined by(:l, Z2, :3)
Then the identity takes A to A.

The Mobius transformations taking ( 21, %2, :3) to (21, 23, :g) is also takes Ato A




Theorm

ral
\

Mob™ acts transitively on the set D on discs in C

Proof

First, recall the definition of disc

Define a disc inTto be one of the components of the complement inC of a circle inC

r\
L

Note that every disc in T determines a unique circle in T, and that every circle

in T~ determines two disjoint discs in C.

Then,
Let A, B be two discs in 7 , where A is determined by circle (4 and B is determined by
circle C'p




Continue

Note that, m(A) can either produce B or the other disc determined by ('

Case 1: If m(A)=B, we proved the theorem.

Case2:

[ Ll

Recall J(z) = oo, J(o0)=0,J(1) =1
Then J takes @ to itself, so J interchanges two discs determined by[®

Now, let n be a Mobius transformations such that n,(A‘p =R

Then, n~! o .J o n takes A to itself and interchanges two discs determined by A.




3. Transformation




Definition

Two Mobius transformations "1: 72 are conjugate if there exist some Mobius

transformations p so that ms = po myo p~*




Definition
A fixed point of the Mbius transformations m is a point z of satisfying m(z) = z, where m is not
an identity

Theorem

Suppose m and n are Mobius transformations that are conjugate. Then, m and n have the

same number of fixed points in T




proof

Since m and n are conjugate ,then by definition. There is a Mobius transformations p such that

m=po no plandn=p o mo p

If n fixes a point xin C,then m =po no p_1 fixes p(x)

m(p(z))=po no pplx)) = p(n(x)) = p(x)

If m fixes a pointy inC , then n fixes p'l(y)

L

n(p~(y))=p o mo plpy)) =p ' (my))=p "' (y)

Therefore, they have the same number of fixed points




Conjugate a Mobius transformations into a
standard form

Suppose m is not an identity.

Suppose x is the only fixed point of min ¥

Let y be any point on T but not equal to x.

Then (2.4, m(Y)) is 3 triple of distinct points of T

Let p be the Mobius transformations taking (x,y,m(y)) to (00,0,1)

We have,

pomop o) =p(m(z)) = plz) =x
Since x is a fixed point and m(x) =




Continue

. —1 .
Since pomop " onlyfixedon ©C

Then,

Let pomop '(z) =az + b for some a # 0
pomop t0)= p(m(y)) = 1,then b= 1

Since there is no solution for pomop™!(z) = zin C
then a =1

We have n = pomop™(z) = z + 1 and it is the standard form of n




Example

Answer
Let m(z) = ;5

First, we need to find the fixed point.

Let- m(

|¢
|
e b

o4

I
+z=2z
Then, the only fixed point of m is 0

Cr o

Now, choose some point in C but not equal to 0
Since we have m(oc) = 1,

We can take p to be the Mdbius transformation from the triple of (0, ¢, 1) to the triple of (00,0, 1)

Then we have p(z) =




Case on two fixed points

"
L

Suppose x and y are two fixed points of m in

Let g be a Mdbius transformation such that ¢(x) = 0 and ¢(y) = o0
By definition, go mo ¢ '(o0) = q(m(y)) = q(y) = x

go mo g '(0)=qg(m(x))=q(x)=0
Then we may write,

go mo g '(z) = az, for some elements in C but not equal to 0 or 1

And a is called as the multiplier of m




Example

Find the Mobius transformation g conjugating m to its standard form and multipier of m

when m(z) = %

Answer

Let m(2) = 25
First, find the fixed points.
2 2241
m(z) = <5 =2
22—2-1=0
1 ¢
Z = 5(‘1 + Vfg)

Let q to be the Mabius transformation from (5 (1 + v'5), 21— '5)) to (0, 00)
Then,

. :— L1 {1+/5)

~ = 24 s

A=) = s




Continue

Note that, ¢~ '(1) = oo and m(oc) = 2

then we have the multiplier of m

=gomoq (1) =q(m(ox)) = q(2)




Example

Let m be a Md6bius transformation with two fixed points x and y. Prove that ifft1 and?2 are two Mobius
transformations satisfying nl(:l.‘) =0= 71-3(;1?) and 72.1(y) =00 = n-g(y), then the multipliers of

—1 -1
NyoMmMon; =mnNy0Mmon,

Answer

Let nyomony ' (2) =az and npomony '(z) = bz
Since we have ny'(ni(z)) = 0 and n; ' (n(y)) = oo
Let p(z) = na(ny*(2)) = ez for some ¢ in C but not equal to 0 or 1
bz =nyomony ' (z2)
=poniomeo n.fl op‘l(:)
=p(%z) = az




Example

Using the notation of the argument just given for Mdbius transformations with two fixed points, prove that if
we conjugate m as above by a Mdébius transformation s satisfying S(:l.‘) = oo and ,S(y) =0, the
muliiplignef s = L

a

Answer

Let s be a M&bius transformation taking (2, y) to (oo, 0)
and g be a Mobius transformation taking (2, y/) to (0, o0)

Let gomoqg !(z) = az

by

|—

Note that, J(z) = = then s —]oq
S0M oS ()—]oqomoq toJ=1z

z




4. Reflection




Complex Conjugation

Consider the simplest homeomorphism of C not already in Mdb™: complex conjugation.

The function ¢ : C — C defined by
C(z) =% for z € C and C(o0) = 00
is an element of Homeo(C ).

Proof
Note that C(Z) = z and C(o0) = o0,

Hence C7'(z) = C(z).

Hence C is a bijection of C.

Let z € C.

Forany € > 0, C(U.(2)) = U(C(2)).
Hence (C is continuous.

Therefore, C' is is an element of Homeo(C ).




The general Mdbius group Mdb is the group generated by Mob* and C.
i.e. Every (nontrivial) element p of Mob can be expressed as a composition:

p=Comgo---Comy

for some k = 1, where each mygis an element of Mdb™.




Theorem
Mo6b € Homeo® (C).

Proof

We have already proved that the elements of Méb* lie in Homeo®(C) before.

Thus, we only have to prove that C : C — C lies in Homeo®(C) to complete the proof.
Let A be a circlein C.

Suppose A is given by the equation azZ + Bz + BE + v =0.

Set w=C(z) ==Z.

Then z = w.

Hence wsatisfies the equation aw@—l—ﬁ'w +ﬂ@+7 = (0, which is acirclein C.

Then, C : C — C lies in Homeo®(C).

Therefore, M6b C Homeo®(C)




Theorem

Every element of Méb has either the form: m(z) = or n(z) =
cz+d

az +b az+ b

where a, b, ¢, d € C and ad — bc # 0

Proof

Note that the composition of two Mdbius transformations is again a Mdbius transformation.

Let m(z) = az+b n(z) = oz+f8 and p(z) = az+b

cz+d '’ YzZ+6 cz+d’
. _az+b _ (aa+by)Z+aB + b6 _ (aa+by)z+aB + b6
Then (mo O)(z) =m(z) = =g » (mema) = e v egrds M4 o) = s G a

Therefore, it has the desired form for all cases.




Reflection

Geometrically, the action of C'on C is reflection in the extended real axisR .

Given we have defined reflection in R , and given M&b acts transitively on
the set C of circles in C, we are able to define reflection in any circle inC .

R
Particularly, let A be a circle in C, we can choose an element m of Mdb I ——>

taking to A, and define reflection in A to be the composition:

Cp=moCom™! ><C(z)




Example

Let A = Sl,

Let m(z)be an element of Mob taking R to S which is the transformation
taking the triple (0O, 1, ) to the triple (i, 1, -i),
z+
Take m(z) =
z+

o
sl

Calculating, Ca(z) = mo Com™ ()




Proposition

Every element of Mob can be expressed as the composition of reflections in finitely many
circles in C.

Proof

Note that Mob is generated by Méb*and C(z) = z,and as Mob" is generated by J(z) = 1
and f(z) = az + b for a, b € C with a # 0, we only have to verify the proposition for
C(z),J(z)and f(2).

For C(z), C(z)is a reflection by definition.

For J(2), J(z) can be expressed by the composition C(z) = z and the reflection ¢(z) = 1 in S'.

For f(z) , f(z) is the composition of L(z) = az and P(z) = z + b, so what we left is to verify the
proposition for L(z) and P(z) .




Continue

For P(z) = z + b,let b = Be*#,let £be the Euclidean line passing through 0 and b,
We express translation along ¢ as the reflection in two lines A and B perpendicular tof ,
with A passing through 0 and B passing through %b.

Set 8 = ¢ — i7. Then we have:

. . , 1-
Ca(z) = e*9z = —€2%Z and Op(z) = —*¥ <E— §b> + b

1

2
21— 21 —23 1- 1

Therefore, (Cp 0 C4)(2) = Cp(—e*'¥z) = —e**¥ | —e™ %2 — §b + §b =z+b.

For L(z) = az, let a = a2e?¥, then L(z)is the composition of D(z) = a2z and E(z) = e*?>.

For D(z), D(z)can be expressed by the composition of the reflection ¢(z) = L in S* and

the reflection cy(2) = O‘;in the Euclidean circle with Euclidean centre 0 and Euclidean radius ¢ .

ForE(z) , E(z)can be expressed by the composition of the reflection C(z) = z in R and

the reflection C3(2) = e*%Z in the Euclidean line through 0 making angle § with R .

Combining the result of the above cases, we have: every element of Mob can be expressed as the
composition of reflections in finitely many circles in C .




Theorem
Mo6b = Homeo®(C).

Proof

We have proved that Méb C Homeo®(C). What we left is to prove Homeo®(C) C Méb .

Let f € Homeo®(C), let p be the Mdbius transformation taking (f(0), f(1), f(c0)) to (0,1, 00).
Then, po f(0) =0, po f(1) =1, and po f(o0) = oo.

Note that po f takes circles in C to circlesin C .

Since p o f(00) = oo and Ris the circle in C determined by (0,1,0), we have po f(R) =R.
Since po f takes R to R and fixes 00 , we have eitherpo f(H) = H or is the lower half-plane.
For po f(H) = H, we set m = p.

For the case of the lower half-plane, we setm = C o p with C being the complex conjugation.
Then, m o f(0) = 0, mo f(1) = 1,mo f(o0) = oo, and mo f(H) = H.

Now, we want to prove thatm o f is the identity.

We will prove this by constructing dense set of points in C such that each of which is fixed by m o f.



Continue

SetZ ={z € @|mof(z) = z}.
Then, 0,1 and oo are elements of Z .

Since m o f fixes oo and lies in Homeo®(C)(0) = 0, m o f(1) = 1,

we have m o f takes Euclidean lines in C to Euclidean lines inC ,

and m o f takes Euclidean circles in C to Euclidean circles in C.

Suppose X and Y are two Euclidean lines in C that intersect at some point zg ,
Further suppose that mo f(X) = X and mo f(Y) =Y,

Then,m o f(zp) = 2o .

Hence, 2zoemo f.

Let s € R,

Let V (s) be the vertical line in C through s.

Let H(s) be a horizontal line in C through is, where i is the imaginary unit.
When's # 0, since H(s)and R are disjoint and m o f(R) = R,

we have mo f(H) and m o f(R) = Rare disjoint.
Hence H(s) is against a horizontal line in C.

Since m o f(H) = H,

we have H(s)lies inH if and only if mo f(H) lies in H.



Continue

Let A be the Euclidean circle with Euclidean centre % and Euclidean radius %
Then, V(0)is tangentto A atOand V(1) is tangent to A at 1.

Hence, m o f(V(0))and mo f(V(1)) are the tangent lines tom o f(A4) at 0 and 1 respectively

Since V(0) and V(1) are parallel Euclidean linesin C,

we have m o f(V'(0))and mo f(V (1)) are parallel Euclidean lines in C .

Hence, m o f(V(0)) = V(0)and mo f(V (1)) =V(1).

Since the tangent lines through 0 and 1 to any other Euclidean circle passing through 0 and 1 are not parallel,
we have mo f(A) = A.

Here, we want to find more points of Z that A contains other than 0 and 1.

Consider H(%) and H( 1), both of them are horizontal lines in C , _—
We can see that H(3)is tangent to A at 3 +3i andH(—3) is tangent to Aat — 5+ 3¢
Since both of them are horizontal lines that tangent to mof(A) A,

we havemo f(H(3)) = H(3)and mo f(H(—3)) =H(—3).

Thus, we have more pointsin 7, including:

HH)nv(©O) =i, H)nv(@) =1+1i, H-)nV(©0) =-Li and H(—3)NV(1) =1—

1

N[




Continue

Hence, Each pair of points in Z gives rise to a Euclidean line that is taken to itself by mo f .
Then, Each triple of noncollinear points in Z gives rise to a Euclidean circle that is taken to itself bymo f .
Thus, more points of Z are found.

Hence, more Euclidean lines and Euclidean circles taken to themselves.

Then, Z contains a dense set of points of C .

Thus, mo fis the identity.

Hence, f = m™lis an element of Mob.

Therefore, Homeo®(C) € Méb .

Combining with M&b C HomeoC(C) , we have Méb = Homeo® (C).




5. Conformality of elements




Definition

angle(Cl, Cz) s

angle(CA1,C2)

Let C, and C, be two smooth curves in C that intersect at a point zp .
Define the angle angle(C,, C,) between C and C, at 29 i ZO

to be the angle between the tangent lines to C, and C, at 2o, measured from C, to C,.

We adopt the following convention:
counterclockwise angles are positive and clockwise angles are negative.

Hence, angle(C,, C)) = - angle(C,, C))




Definition
Conformality

A homeomorphism of C that preserves the absolute value of the angle between curves
is said to be conformal.

One major fact is that the elements of Mob are conformal.




Theorem

The elements of M6b are conformal homeomorphisms of C.

Proof

let X7 and X, be two Euclidean lines in C that intersect at a point 2,
let zk be a point on X such that zx, #2(, and let Sk be the slope of X,.

Im(zx — 20)

Henc = .
SNCe: S Re(zr — 20)

Let 6 be the angle that X, makes with the real axis R,
Then, S = tan(@k)and angle(X1, X3) = 03 — 61 = arctan(sy) — arctan(sy).
Note that Mob is generated by Méb*and C(z) = z,and as Mob" is generated by J(z) = 1

and f(z) = az + b for a, b € C with a # 0, we only have to verify the proposition for
C(z),J(z)and f(2).




Continue

For f(2) = az + b,writea = pe®”.
Since f(00) = 0o, we have f(X1) and f(X2) are against Euclidean lines in C.
Note that f(X%) passes through the points f(z9) and f(zk).

Let ¢, be the slope of f(X%),

_ Im(f(z) — f(20)) Im(a(zx — 20))

"7 Re(fak) — fz0)  Re(a(en —20))

~ Im(e(zx — 20)) n

~ Re(eP(zr — 20)) tan(f + Ok)-
Hence, angle(f(X1), f(X2)) = arctan(tz) — arctan(ty)

(B+02) — (B+061)
62 — 01 = angle(X1, X»)

Therefore, f(z)is conformal.




Continue

For J(z) = %, J(X;) and J(X3) may not only be two Euclidean lines in C.
They may be both Euclidean circles in C, or may be one Euclidean line and one Euclidean circle.
Here, we prove for the case that both of them are Euclidean circles in C.

We may suppose that X} is given as the set of solutions to the following equation:

Brz+ Brz+1=0 where 8, € C

R
Let Si be the slope of X, then s = IIZEgki .
k

Hence, J(X})can be given as the set of solutions to the following equation:

2Z + EZ + BrZ = 0, which is equivalent to |2 + 5k\2 = |5k\2

_ . Re(B)
Thus, the slope of the tangent line to J(Xy)atOis ~ Tm(By)

Then, angle(J(X1), J(X2)) = —02 — (—61) = —angle(X1, X>)

Hence, the absolute value of the angle between curves is preserved.
Therefore, J(z) is conformal.

= —tan(6y) = tan(—06%)



Continue

For C(z) =z , since X}, passes through 2 and 2o,

we have C(X}) passes through C(z) = zg and C'(z;) = Z.

Im(z; — %) _  TIm(z, —2) _
Re(zx —Z0)  Re(zr —20)

Let Sk be the slope of C(X}), then Sk =

—Sk.

Hence, angle(C(X1),C(X3)) = arctan(S;) — arctan(Sh)
= —arctan(sy) + arctan(s;) = —angle(X7, X2).

Hence, the absolute value of the angle between curves is preserved.
Therefore, C(z)is conformal.

Combining the result of the three above cases, we have:
The elements of M6b are conformal homeomorphisms of C.




©. Preserving H and transitivity properties




Definition
In order to find transformations that take hyperbolic lines in[H to hyperbolic lines inH ,

Let’s consider the following group:

M&b(H) = {m € Méb | m(H) = H}.




Theorem

Every element of Mob(H) takes hyperbolic lines in H to hyperbolic lines in H.

Proof

The proof of this theorem is the immediate consequence of the previous theorem:

The elements of Mob are conformal homeomorphisms of C.

That is:
1)  The elements of M&b(H) preserve angles between circles in €

2) Every hyperbolic line in H is the intersection of H with a circle in C perpendicular to R
3) Every element of Mdb takes circles in C to circles in C.




Definition
Let’s consider the following groups:

Mob(R) = {m € Mob | m(R) = R}

|

M6b(H) = {m € Mob | m(H) = H}
|

Moébt (H) = {m € Méb™' | m(H) = H}




Recall: Theorem

Every element of Méb has either the form: m(z) = or n(z) =
cz+d

az +b az+ b

where a, b, ¢, d € C and ad — bc # 0

Proof

Note that the composition of two Mdbius transformations is again a Mdbius transformation.

Let m(z) = az+b n(z) = oz+f8 and p(z) = az+b

cz+d '’ YzZ+6 cz+d’
. _az+b _ (aa+by)Z+aB + b6 _ (aa+by)z+aB + b6
Then (mo O)(z) =m(z) = =g » (mema) = e v egrds M4 o) = s G a

Therefore, it has the desired form for all cases.




Continue

az+b az + b
Every element of Méb has either the form: m(z) = or =
Y (2) cz+d n(2) cz +d
where a, b, ¢, d € C and ad — bc # 0
_ _ az + b
Since C(R) = R,wehavem o C(z) = m(z) = .
C(R) () =m(z) =

az+b
cz+d
a

Then, m™1(c0) = —=, m(o0) = = and m~1(0) = —g allliein R .

Hence, we only have to considerm(z) = and limit the constraintto gd — bc = 1 .




Continue

Case 1: Suppose a # 0 and ¢ # 0,

Hence a = m(o0)c, b= —m~1(0)a = —m~1(0)m(c0)c, and d = —m~1(oc0)c.

az+b  m(oo)cz —m~1(0)m(oco)c

Th = =
en m(z) cz+d cz —m~1(oc0)c

Then, 1=ad—bc = c*[-m(co)m (c0) 4+ m(co)m™1(0)]

= ¢ [m(c0)(m™"(0) —m™(c0))].

Since m(00), m~1(0), and m~*(co) are all real,

we have ¢ is either real or purely imaginary.

Hence, a, b, ¢, and d are either all real or all purely imaginary.




Continue

Case 2: Suppose a = 0,

Hence ¢ # 0 and then m(1) = cj%d and m~!(o0) = — 2.

Then, d = —m™!(c0)c and b = m(1)(c +d) = (m(1) — m™*(c0))c.

Then, 1 =ad —bc= (m~*(c0) — m(1))c?.

Then, c is either real or purely imaginary.

Hence, a, b, ¢, and d are either all real or all purely imaginary.




Continue

Case 3: Suppose ¢ = () ,
Hence a # 0 and d # Oand then both m(0) = & and m(1) = %2 are real.
Then, b = m(0)d and a = (m(1) — m(0))d.

Then, 1 = ad — bc = (m(1) — m(0))d>.

Then, d is either real or purely imaginary.

Hence, a, b, ¢, and d are either all real or all purely imaginary.




Continue

az+b

cz+d orm(z) = 2Z+b with ad — be = 1

cz+d

Conversely, suppose m has either the form m(z) =

Further suppose a, b, ¢, and d are either all real or all purely imaginary,

Then m(oo0), m~1(0), and m~1(oco)arealllieon R,

Therefore, m takes R to R .




Theorem

Every element of M6b(RR) has one of the following four forms:

az+b
cz+d

with a, b, ¢, d € R and ad — bc =1

2. m(z)z%ﬂwitha, b,c,d€e R and ad —bc=1

3. m(z) = ‘c"j_tg with a, b, ¢, d purely imaginary and ad — bc = 1

4. m(z) = %idb with a, b, ¢, d purely imaginary and ad — bc = 1




Continue

az+b
cz+d’

Hence, Im(m(i)) = Im (aier)

Case 1: Suppose m(z) = where a, b, ¢, and d are real such that ad — bc = 1.

ci+d

— Im (ai +b)(—ci+d)\ ad—bc 1 S
B (ci+d)(—ci+d)) cE2+d> 2+ d?

Therefore, m € Mob(H) in this case.

0,




Continue

az+b
cz+d "’

Case 2: Suppose m(z) = where a, b, ¢, and d arereal suchthat ad — bc = 1.

. —ai+b
Hence, Im(m(i)) = Im (—ci—l—d)
B (—ai+0b)(ci+d)\ —ad+bc -1
B Im((—ci—i—d)(ci—i—d) o2 +d? 2+ d? <0,

Therefore, m ¢ Mob(H) in this case.




Continue

az+b
cz+d’

Case 3: Suppose m(z) = where a, b, ¢, and d are purely imaginary such that ad — bc = 1.

Write @ = o, b = (i, ¢ = 7i, and d = i suchthat ad — By = —1.

Hence, Im(m(i)) = Im (ZZ:;) —Tm <::i§;>

- (R 0) ooy
(= + 64)(—y — &7) V2402 2+ 62
Therefore, m ¢ Mob(H) in this case.

<0,




Continue

az+b
cz+d "’

Case 4: Suppose m(z) = where a, b, ¢, and d are purely imaginary such that ad — bc = 1.

Write @ = o, b = (i, ¢ = 7i, and d = i suchthat ad — By = —1.

' —at+b a+ pi
Hence, = B
ence, Im(m(i)) Im (—ci-i—d) Im('y+5i>

Im((a—kﬂi)(v—éi)):—(w—l—ﬁv: 1
(v + 63)(y — d1) 72 + 62 72 + 62
Therefore, m € Mob(H) in this case.

> 0,




Theorem

Every element of Mob(H)has one of the following two forms:

az+ b
cz+d’
az + b

2.n(z) = Zrd’ where a, b, ¢, d are purely imaginary and ad — bc =1

1. m(z) = where a, b, ¢, d € R and ad —bc =1




Continue

No element of M6b(H) of the form:
az+ b

cz+d’
can be an element of Mob™ (H) -

n(z) = where a, b, ¢, d are purely imaginary and ad — bc = 1




Theorem

Every element of Méb™ (H) has following form:

az+ b
cz+d’

1. m(z) = where a, b, ¢, d € R and ad —bc =1




Proposition

Reflection in a circle in C is well defined.

Proof
Let m €MSb(R) , let C(z) =z

Form(z):%mtha b,c,deRand ad —bc=1 ,

az + b
cz+d

=mo C(z)

Com(z) =

For m(z) = ajis with a, b, ¢, d purely imaginary and ad —bc =1 ,

—az—b az+b
C pr— pr— p— C
om(z) —cz—d cz+d meiCiz) _
Let A be acirclein C, let m,neMsh(R), both taking R to A.
Then, n= ! om takes R toR , thus n=t om = p for some element p of Mob(R).

In particular,po C' = C op. Write m = n o p.

moCom_lznopoCop_lon_l:nopop_loCon

-1 -1

=no(Con
Therefore, Reflection in a circle in Cis well defined.




Recall: Lemma

A group G acts on a set X if there is a homomorphism from G in to the group bij(X) of bijections of X

Definition

G acts transitively on X if for each pair x and y of elements of X, there exist some element g of G
satisfying g(x) =y

Lemma
Suppose a group G acts on a set X, and let x;,be a point of X. Suppose for each point y of X,

there exists an element g of G so that (%) = 0. Then, G acts transitively on a set X




Proposition
Mob(H) acts transitively on H.

Proof

Let w € H, it is sufficient to show that 3m € Msb(H)such that m(w) = 1.
Let w = a+bi, wherea,bc€Rand b > 0.

Let p(z) = z — a, thus p(w) = p(a + bi) = bi.

Let g(z) = %z , thus g(p(w)) = q(bi) = 3.

Note that —q € IR and % > 0.

Hence, p(z) € M6b(H) and g(z) € M6b(H) -

Then, g o p(2) € Mob(H).

Therefore, Mob(H) acts transitively on H.




Definition
Let ¢ be a hyperbolic line in H .
Open half-plane in H : a component of the complement of £

Closed half-plane in H : the union of £ with one of the open half- planes determined by £ .

Half-plane in H : either open half-plane or closed half-plane in H .




Recall: Lemma

A group G acts on a set X if there is a homomorphism from G in to the group bij(X) of bijections of X

Definition

G acts transitively on X if for each pair x and y of elements of X, there exist some element g of G
satisfying g(x) =y

Lemma
Suppose a group G acts on a set X, and let x;,be a point of X. Suppose for each point y of X,

there exists an element g of G so that (%) = 0. Then, G acts transitively on a set X




Proposition

Mo6b(H) acts triply transitively on the set 7 of triples of distinct points of R .

Proof

Let (21, 22, 23) be a triple of distinct points of R .
It is sufficient to prove that 3 me Mo6b(H)such that m takes(z1, 22, z3) to (0,1, c0).

Let ¢ be the hyperbolic line whose endpoints at infinity are 21 and 23,

Let  be an element of M6b(H) taking ¢ to the positive imaginary axis I.

Assume that m(z;) = 0 and m(z3) = oo as we can composing m with K(z) = —% if necessary.
Set b =m(z9).

If b > 0, then the composition of mwith p(z) = 3z takes (21, 22, 23) to (0,1, 00).

If b < 0, then the composition of mwith ¢(z) = ;ztakes (21, 22, 23) to (0,1, 00)

Therefore,Mob(H) acts triply transitively on the set 7 of triples of distinct points of R .




/. Conclusion




We have talked about the following topics:

Transitivity
Transfomration

Relfection

Conformality of elements

Preserving H and transitivity properties

e wh e
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Thank you very much!




