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3. Transformation
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Conjugate a Möbius transformations into a 
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Find the Möbius transformation p conjugating m to its standard form when 
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4. Reflection
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Proposition
Every element of  can be expressed as the composition of reflections in finitely many 
circles in    .

Note that  is generated by + and        and as + is generated by  
and                we only have to verify the proposition for
        ,        and       .
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5. Conformality of elements
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A homeomorphism of       that preserves the absolute value of the angle between curves 
is said to be conformal.

One major fact is that the elements of  are conformal.



Theorem

let      and      be two Euclidean lines in    that intersect at a point     ,
let      be a point on      such that    , and let      be the slope of      .

Hence, 

Let      be the angle that      makes with the real axis    ,

Then,        and  

Note that  is generated by + and        and as + is generated by  
and                we only have to verify the proposition for
        ,        and       .
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6. Preserving H and transitivity properties
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That is:
1) The elements of  preserve angles between circles in 
2) Every hyperbolic line in     is the intersection of     with a circle in    perpendicular to  
3) Every element of  takes circles in     to circles in    .
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Reflection in a circle in     is well defined.

Proposition

Let , let     .

         For ,

For       ,

Therefore, Reflection in a circle in     is well defined.

Let      be a circle in     , let     ,        , both taking     to    . 
Then,         takes      to     , thus         for some element    of . 
In particular,         . Write .
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Open half-plane in     : a component of the complement of     .

Definition
a hyperbolic line in      .

Closed half-plane in     : the union of     with one of the open half- planes determined by    .

Half-plane in     : either open half-plane or closed half-plane in     .
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7. Conclusion



We have talked about the following topics:
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Thank you very much!


